These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics.
    Author: Zhang Y, Hua ZS, Lu H, Oehmen A, Guo J.
    Journal: Water Res; 2019 Jan 01; 148():219-230. PubMed ID: 30388523.
    Abstract:
    Denitrifying sulfur conversion-associated enhanced biological phosphorous removal (DS-EBPR) system is not only a novel wastewater treatment process, but also an ideal model for microbial ecology in a community context. However, it exists the knowledge gap on the roles and interactions of functional microorganisms in the DS-EBPR system for carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) bioconversions. We use genome-resolved metagenomics to build up an ecological model of microbial communities in a lab-scale DS-EBPR system with stable operation for more than 400 days. Our results yield 11 near-complete draft genomes that represent a substantial portion of the microbial community (39.4%). Sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) promote complex metabolic processes and interactions for C, N, P and S conversions. Bins 1-4 and 10 are considered as new potential polyphosphate-accumulating organisms (PAOs), in which Bins 1-4 can be considered as S-related PAOs (S-PAOs) with no previously cultivated or reported members. Our findings give an insight into a new ecological system with C, N, P and S simultaneous bioconversions and improve the understanding of interactions among SRB, SOB, denitrifiers and PAOs within a community context.
    [Abstract] [Full Text] [Related] [New Search]