These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism.
    Author: Long Y, Bu S, Huang Y, Shao Y, Xiao L, Shi X.
    Journal: Chemosphere; 2019 Feb; 216():545-555. PubMed ID: 30388690.
    Abstract:
    Metal-free carbo-catalyst has recently emerged as a promising candidate as a substituent for tradition-metal based heterogeneous catalyst for catalytic activation of peroxymonosulfate (PMS). However, most reported carbo-catalysts suffer from low catalytic efficiency and poor stability, thus a high-performance catalyst is urgently desired. In this study, a novel carbo-catalyst (NHPC-800), prepared by using tannic acid and dicyandiamide as renewable carbon/nitrogen feedstocks via a simple pyrolysis route, is reported as an activator of PMS with highly efficient catalytic ability and stability. The as-prepared NHPC-800 possesses as high as 22.4 atom% of nitrogen dopants and a hierarchically porous structure with abundant meso/macropores, accompanied by the abundant edges and wrinkles, which supply sufficient exposed catalytically active centers and fast electrons/mass transportations. Using rhodamine B as a model pollutant, the NHPC-800 shows a highly efficient catalytic ability which is superior to most reported carbo-catalysts and even some state-of-the-art metal catalysts. Based on competitive quenching experiments and electron paramagnetic resonance (EPR) results, a non-radical pathway involving the generation of 1O2 is responsible for the degradation of pollutants. Given that the NHPC-800 shows good recycling performance and strong resistance to adventitious interference such as anions and natural organic matters, we believe NHPC-800 can be a promising candidate for practical applications, and this study can provide inspirations for the further development of highly efficient carbo-catalysts.
    [Abstract] [Full Text] [Related] [New Search]