These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrophysiological Mechanism of Peripheral Hormones and Nutrients Regulating Energy Homeostasis. Author: Huang Z, Xiao K. Journal: Adv Exp Med Biol; 2018; 1090():183-198. PubMed ID: 30390291. Abstract: In organism, energy homeostasis is a biological process that involves the coordinated homeostatic regulation of energy intake (food intake) and energy expenditure. The human brain, particularly the hypothalamic proopiomelanocortin (POMC)- and agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons in the arcuate nucleus, plays an essential role in regulating energy homeostasis. The regulation process is mainly dependent upon peripheral hormones such as leptin and insulin, as well as nutrients such as glucose, amino acids, and fatty acids. Although many studies have attempted to illustrate the exact mechanisms of glucose and hormones action on these neurons, we still cannot clearly see the full picture of this regulation action. Therefore, in this review we will mainly discuss those established theories and recent progresses in this area, demonstrating the possible physiological mechanism by which glucose, leptin, and insulin affect neuronal excitability of POMC and AgRP neurons. In addition, we will also focus on some important ion channels which are expressed by POMC and AgRP neurons, such as KATP channels and TRPC channels, and explain how these channels are regulated by peripheral hormones and nutrients and thus regulate energy homeostasis.[Abstract] [Full Text] [Related] [New Search]