These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ADP binding to myosin cross-bridges and its effect on the cross-bridge detachment rate constants.
    Author: Schoenberg M, Eisenberg E.
    Journal: J Gen Physiol; 1987 Jun; 89(6):905-20. PubMed ID: 3039037.
    Abstract:
    We have studied the binding of adenosine diphosphate (ADP) to attached cross-bridges in chemically skinned rabbit psoas muscle fibers and the effect of that binding on the cross-bridge detachment rate constants. Cross-bridges with ADP bound to the active site behave very similarly to cross-bridges without any nucleotide at the active site. First, fiber stiffness is the same as in rigor, which presumably implies that, as in rigor, all the cross-bridges are attached. Second, the cross-bridge detachment rate constants in the presence of ADP, measured from the rate of decay of the force induced by a small stretch, are, over a time scale of minutes, similar to those seen in rigor. Because ADP binding to the active site does not cause an increase in the cross-bridge detachment rate constants, whereas binding of nucleotide analogues such as adenyl-5'-yl imidodiphosphate (AMP-PNP) and pyrophosphate (PPi) do, it was possible, by using ADP as a competitive inhibitor of PPi or AMP-PNP, to measure the competitive inhibition constant and thereby the dissociation constant for ADP binding to attached cross-bridges. We found that adding 175 microM ADP to 4 mM PPi or 4 mM AMP-PNP produces as much of a decrease in the apparent cross-bridge detachment rate constants as reducing the analogue concentration from 4 to 1 mM. This suggests that ADP is binding to attached cross-bridges with a dissociation constant of approximately 60 microM. This value is quite similar to that reported for ADP binding to actomyosin subfragment-1 (acto-S1) in solution, which provides further support for the idea that nucleotides and nucleotide analogues seem to bind about as strongly to attached cross-bridges in fibers as to acto-S1 in solution (Johnson, R.E., and P. H. Adams. 1984. FEBS Letters. 174:11-14; Schoenberg, M., and E. Eisenberg. 1985. Biophysical Journal. 48:863-871; Biosca, J.A., L.E. Greene, and E. Eisenberg. 1986. Journal of Biological Chemistry. 261:9793-9800).
    [Abstract] [Full Text] [Related] [New Search]