These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biomonitoring and health risks assessment of trace elements in various age- and gender-groups exposed to road dust in habitable urban-industrial areas of Hefei, China.
    Author: Ali MU, Liu G, Yousaf B, Ullah H, Abbas Q, Munir MAM, Irshad S.
    Journal: Environ Pollut; 2019 Jan; 244():809-817. PubMed ID: 30390454.
    Abstract:
    The current study investigates the concentration of eleven trace elements in biomaterials including hair (85) and nails (85) along with seventy five (75) road dust samples collected from a healthy population of habitable urban-industrial areas of Hefei, China. The samples were acid digested and analyzed using ICP-MS for trace elements content. The mean concentration of Elements followed descending order of Zn > Mg > Fe > Cr > Al > Sn > Sr > Ti > Cu > As > Cd and Mg > Zn > Fe > Cr > Al > Sn > Ti > Cu > Sr > As > Cd in hair and nails, respectively. Overall, the concentration of elements was found to be high in female subject as compared to male. The concentration of trace elements in hair and nail exceeded the maximum permissible limits in most cases. The corresponding mean values from dust samples were fairly high as compared to background values of trace elements. Middle age groups (21-30 years and 31-40 years) were observed to be the most vulnerable there-by posing a high health risk, as the concentration of trace elements was significantly high in these groups except for Al, which was detected high in age < 20 in case of both male and female. A significantly high correlation was found between trace elements in biomaterials and those detected in dust samples. In hair samples, a significantly positive correlation was noticed for As with Mg, Zn, Sn and Fe, Sn/Mg and Mg/Ti. In the case of nails, a significant correlation was observed for elements like Al, Mg, Zn, Cr, and Cu. The Cluster and principal component analysis revealed industrial and vehicular emissions as main sources for trace elements exposure in humans.
    [Abstract] [Full Text] [Related] [New Search]