These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GPCR homology model template selection benchmarking: Global versus local similarity measures.
    Author: Castleman PN, Sears CK, Cole JA, Baker DL, Parrill AL.
    Journal: J Mol Graph Model; 2019 Jan; 86():235-246. PubMed ID: 30390544.
    Abstract:
    G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for drug development. GPCR ligand interaction studies often have a starting point with either crystal structures or comparative models. The majority of GPCR do not have experimentally-characterized 3-dimensional structures, so comparative modeling, also called homology modeling, is a good structure-based starting point. Comparative modeling is a widely used method for generating models of proteins with unknown structures by analogy to crystallized proteins that are expected to exhibit structural conservation. Traditionally, comparative modeling template selection is based on global sequence identity and shared function. However high sequence identity localized to the ligand binding pocket may produce better models to examine protein-ligand interactions. This in silico benchmark study examined the performance of a global versus local similarity measure applied to comparative modeling template selection for 6 previously crystallized, class A GCPR (CXCR4, FFAR1, NOP, P2Y12, OPRK, and M1) with the long-term goal of optimizing GPCR ligand identification efforts. Comparative models were generated from templates selected using both global and local similarity measures. Similarity to reference crystal structures was reflected in RMSD values between atom positions throughout the structure or localized to the ligand binding pocket. Overall, models deviated from the reference crystal structure to a similar degree regardless of whether the template was selected using a global or local similarity measure. Ligand docking simulations were performed to assess relative performance in predicting protein-ligand complex structures and interaction networks. Calculated RMSD values between ligand poses from docking simulations and crystal structures indicate that models based on locally selected templates give docked poses that better mimic crystallographic ligand positions than those based on globally-selected templates in five of the six benchmark cases. However, protein model refinement strategies in advance of ligand docking applications are clearly essential as the average RMSD between crystallographic poses and poses docked into local template models was 9.7 Å and typically less than half of the ligand interaction sites are shared between the docked and crystallographic poses. These data support the utilization of local similarity measures to guide template selection in protocols using comparative models to investigate ligand-receptor interactions.
    [Abstract] [Full Text] [Related] [New Search]