These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous Determination of Inorganic Anions and Cations in Water and Biological Samples by Capillary Electrophoresis with a Capacitive Coupled Contactless Conductivity Detector Using Capillary Filling Method.
    Author: Yamamoto S, Fujiwara H, Maruyama K, Tanaka Y, Kinoshita M, Suzuki S.
    Journal: Anal Sci; 2019 Mar 10; 35(3):295-300. PubMed ID: 30393239.
    Abstract:
    An analytical method for concurrent analysis of inorganic anions and cations has been developed using a capillary electrophoresis (CE)-capacitively coupled contactless conductivity detector (C4D) system. Although hydrodynamic and electrokinetic injection techniques have been widely used in CE, we employed a capillary filling method (CFM) for the analysis of inorganic ions. The procedure is relatively simple and has the advantage that CMF does not require pressure control and vial exchange. Three anions (chloride, sulfate, nitrate) and five cations (ammonium, potassium, sodium, magnesium, calcium) were successfully separated and detected at ppm levels within 80 s using a 9 mM histidine/15 mM malic acid (pH 3.6) containing 50 mM N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate as background electrolyte. Applying this analytical condition, the electroosmotic flow is negligible and anions and cations were migrated concurrently to different polarities according to their electrophoretic mobility. Obtained raw data showed stepwise increases in detected conductivity due to the migration of sample components, which expresses as peak profiles by differentiation of electropherograms. The RSD values of the peak area and migration times for the anions and cations were satisfactory and were less than 5.15 and 2.04%, respectively. The developed method was applied for the analysis of inorganic anions and cations in commercial mineral waters, tap water, urine, and exhaled breath condensate. These results indicate that the CE-C4D system with CFM is suitable for the rapid analysis of inorganic anions and cations in various samples.
    [Abstract] [Full Text] [Related] [New Search]