These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Overexpression of PkINO1 improves ethanol resistance of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter nuruk. Author: Sugiyama M, Baek SY, Takashima S, Miyashita N, Ishida K, Mun J, Yeo SH. Journal: J Biosci Bioeng; 2018 Dec; 126(6):682-689. PubMed ID: 30401451. Abstract: The yeast Pichia kudriavzevii N77-4 was isolated from the Korean traditional fermentation starter nuruk. In this study, fermentation performance and stress resistance ability of N77-4 was analyzed. N77-4 displayed superior thermotolerance (up to 44°C) in addition to enhanced acetic acid resistance compared to Saccharomyces cerevisiae. Moreover, N77-4 produced 7.4 g/L of ethanol with an overall production yield of 0.37 g/g glucose in 20 g/L glucose medium. However, in 250 g/L glucose medium the growth of N77-4 slowed down when the concentration of ethanol reached 14 g/L or more and ethanol production yield also decreased to 0.30 g/g glucose. An ethanol sensitivity test indicated that N77-4 was sensitive to the presence of 1% ethanol, which was not the case for S. cerevisiae. Furthermore, N77-4 displayed a severe growth defect in the presence of 6% ethanol. Because inositol biosynthesis is critical for ethanol resistance, expression levels of the PkINO1 encoding a key enzyme for inositol biosynthesis was analyzed under ethanol stress conditions. We found that ethanol stress clearly repressed PkINO1 expression in a dose-dependent manner and overexpression of PkINO1 improved the growth of N77-4 by 19% in the presence of 6% ethanol. Furthermore, inositol supplementation also enhanced the growth by 13% under 6% ethanol condition. These findings indicate that preventing downregulation in PkINO1 expression caused by ethanol stress improves ethanol resistance and enhances the utility of P. kudriavzevii N77-4 in brewing and fermentation biotechnology.[Abstract] [Full Text] [Related] [New Search]