These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Three LcABFs are Involved in the Regulation of Chlorophyll Degradation and Anthocyanin Biosynthesis During Fruit Ripening in Litchi chinensis.
    Author: Hu B, Lai B, Wang D, Li J, Chen L, Qin Y, Wang H, Qin Y, Hu G, Zhao J.
    Journal: Plant Cell Physiol; 2019 Feb 01; 60(2):448-461. PubMed ID: 30407601.
    Abstract:
    During litchi (Litchi chinensis Sonn.) fruit ripening, two major physiological changes, degreening (Chl degradation) and pigmentation (anthocyanin biosynthesis), are visually apparent. However, the specific factor triggering this important transition is still unclear. In the present study, we found that endogenous ABA content increased sharply when Chl breakdown was initiated and the ABA level peaked just before the onset of anthocyanin accumulation, suggesting that ABA plays an important role during litchi fruit pigmentation. We characterized three ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTORs (LcABF1/2/3) belonging to group A of the basic leucine zipper (bZIP) transcription factors previously shown to be involved in ABA signaling under abiotic stress. LcABF1 transcripts increased at the onset of Chl degradation, and the expression of LcABF3 accumulated in parallel with anthocyanin biosynthesis. In addition, dual luciferase and yeast one-hybrid assays indicated that LcABF1/2 recognized ABA-responsive elements in the promoter region of Chl degradation-related genes (PAO and SGR), while LcABF2/3 bound the promoter region of LcMYB1 and anthocyanin biosynthesis-related structural genes. Indeed, Nicotiana benthamiana leaves transiently expressing LcABF1/2 showed a senescence phenomenon with Chl degradation, and LcABF3 overexpression increased the accumulation of anthocyanin via activation of LcMYB1, which is the key determinant of anthocyanin biosynthesis. These data indicate that LcABF1/2/3 are important transcriptional regulators of ABA-dependent litchi fruit ripening involved in both Chl degradation and anthocyanin biosynthesis.
    [Abstract] [Full Text] [Related] [New Search]