These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exploiting Synergetic Effects of Graphene Oxide and a Silver-Based Metal-Organic Framework To Enhance Antifouling and Anti-Biofouling Properties of Thin-Film Nanocomposite Membranes.
    Author: Firouzjaei MD, Shamsabadi AA, Aktij SA, Seyedpour SF, Sharifian Gh M, Rahimpour A, Esfahani MR, Ulbricht M, Soroush M.
    Journal: ACS Appl Mater Interfaces; 2018 Dec 12; 10(49):42967-42978. PubMed ID: 30411881.
    Abstract:
    Thin-film composite (TFC) membranes still suffer from fouling and biofouling. In this work, by incorporating a graphene oxide (GO)-silver-based metal-organic framework (Ag-MOF) into the TFC selective layer, we synthesized a thin-film nanocomposite (TFN) membrane that has notably improved anti-biofouling and antifouling properties. The TFN membrane has a more negative surface charge, higher hydrophilicity, and higher water permeability compared with the TFC membrane. Fluorescence imaging revealed that the GO-Ag-MOF TFN membrane kills Escherichia (E.) coli more than the Ag-MOF TFN, GO TFN, and pristine TFC membranes by 16, 30, and 92%, respectively. Forward osmosis experiments with E. coli and sodium alginate suspensions showed that the GO-Ag-MOF TFN membrane by far has the lowest water flux reduction among the four membranes, proving the exceptional anti-biofouling and antifouling properties of the GO-Ag-MOF TFN membrane.
    [Abstract] [Full Text] [Related] [New Search]