These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The potential role of HO-1 in regulating the MLK3-MKK7-JNK3 module scaffolded by JIP1 during cerebral ischemia/reperfusion in rats.
    Author: Song YJ, Dai CX, Li M, Cui MM, Ding X, Zhao XF, Wang CL, Li ZL, Guo MY, Fu YY, Wen XR, Qi DS, Wang YL.
    Journal: Behav Brain Res; 2019 Feb 01; 359():528-535. PubMed ID: 30412737.
    Abstract:
    Heme oxygenase (HO-1), which may be induced by Cobaltic protoporphyrin IX chloride (CoPPIX) or Rosiglitazone (Ros), is a neuroprotective agent that effectively reduces ischemic stroke. Previous studies have shown that the neuroprotective mechanisms of HO-1 are related to JNK signaling. The expression of HO-1 protects cells from death through the JNK signaling pathway. This study aimed to ascertain whether the neuroprotective effect of HO-1 depends on the assembly of the MLK3-MKK7-JNK3 signaling module scaffolded by JIP1 and further influences the JNK signal transmission through HO-1. Prior to the ischemia-reperfusion experiment, CoPPIX was injected through the lateral ventricle for 5 consecutive days or Ros was administered via intraperitoneal administration in the week prior to transient ischemia. Our results demonstrated that HO-1 could inhibit the assembly of the MLK3-MKK7-JNK3 signaling module scaffolded by JIP1 and could ultimately diminish the phosphorylation of JNK3. Furthermore, the inhibition of JNK3 phosphorylation downregulated the level of p-c-Jun and elevated neuronal cell death in the CA1 of the hippocampus. Taken together, these findings suggested that HO-1 could ameliorate brain injury by regulating the MLK3-MKK7-JNK3 signaling module, which was scaffolded by JIP1 and JNK signaling during cerebral ischemia/reperfusion.
    [Abstract] [Full Text] [Related] [New Search]