These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-454-3p Is an Exosomal Biomarker and Functions as a Tumor Suppressor in Glioma.
    Author: Shao N, Xue L, Wang R, Luo K, Zhi F, Lan Q.
    Journal: Mol Cancer Ther; 2019 Feb; 18(2):459-469. PubMed ID: 30413650.
    Abstract:
    Glioma is the most common type of primary malignant brain tumor in adults. Our previous work discovered that plasma miR-454-3p may have some advantages in glioma prognosis, but the clinical significance and the regulatory mechanism of miR-454-3p in glioma have not been systematically investigated, especially regarding the relationship between circulating and tissue miR-454-3p. The expression level of miR-454-3p in glioma serum and tissues was analyzed through quantitative real-time PCR (qRT-PCR). Cell-Counting Kit 8 (CCK-8), wound healing, transwell invasion, apoptosis, and immunofluorescence assays were used to assess the role of miR-454-3p in glioma cancer cells. ATG12 was selected as the target gene of miR-454-3p by bioinformatic analysis. The relationship between ATG12 and miR-454-3p was further validated by luciferase reporter assays and Western blot analysis. miR-454-3p was significantly downregulated in tumor tissues, while it was remarkably upregulated in exosomes from the same patients with glioma. The area under curve (AUC) of exosomal miR-454-3p for glioma diagnosis was 0.8663. The exosomal miR-454-3p was prominently lower in the postoperative serums than that in the preoperative serums. High miR-454-3p expression in exosomes or low miR-454-3p expression in tissue was associated with poor prognosis. Restored expression of miR-454-3p suppressed cell proliferation, migration, invasion, and autophagy in glioma. ATG12 was validated as a direct target of miR-454-3p. The overexpression of ATG12 could partially reverse the effects induced by miR-454-3p suppression. Our data indicate that miR-454-3p may serve as an exosomal biomarker and may be developed into a novel treatment for glioma.
    [Abstract] [Full Text] [Related] [New Search]