These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigation on degradation behavior of dissolved effluent organic matter, organic micro-pollutants and bio-toxicity reduction from secondary effluent treated by ozonation.
    Author: Li M, Chen Z, Wang Z, Wen Q.
    Journal: Chemosphere; 2019 Feb; 217():223-231. PubMed ID: 30415120.
    Abstract:
    The environmental risk of secondary effluent has caused increasing attention in recent years, the negative effect of dissolved effluent organic matters (dEfOM) and organic micro-pollutants (OMPs) was a hot research point. In this research, the degradation behavior of dEfOM and fourteen OMPs in the ozonation was revealed using spectroscopic and chromatographic tools. Ozonation was effective for reducing UV254, but had limited effect in dissolved organic carbon reduction. The dEfOM with shorter absorption wavelength was preferentially removed in the ozonation (230 nm  >  240 nm > 254 nm) and high molecular weight humics was largely reduced by the ozonation. Soluble microbial by-products were more reactive with ozone than humic acid as reflected by the fluorescence. Degradation behavior of the OMPs was identified based on their elimination kinetics and molecular structures and a simplified classification method was proposed. The group I OMPs (logkO3>5) showed high removal efficiency with 1 mg/L of ozone, while the removal of group II OMPs (1< logkO3<5) was largely dependent on the ozone dose. The CC bond, deprotonated amidogen, phenolic, aniline and anisole groups in these OMPs structures were the main reaction sites with ozone. The group III OMPs without active groups in the molecules showed slight removal in the ozonation. Moreover, genotoxicity and estrogenic activity were simultaneously analyzed for further evaluation on the risk of the effluent. The genotoxicity and estrogenic activity of the secondary effluent were 73.46 μg 4-NQO/L and 519.86 ng E2/L, respectively and an ozone dose of 10 mg/L could reduce the bio-toxicity to the detection limit.
    [Abstract] [Full Text] [Related] [New Search]