These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heme oxygenase-1 ameliorates hypoxia/reoxygenation via suppressing apoptosis and enhancing autophagy and cell proliferation though Sirt3 signaling pathway in H9c2 cells. Author: Meng X, Yuan Y, Shen F, Li C. Journal: Naunyn Schmiedebergs Arch Pharmacol; 2019 Feb; 392(2):189-198. PubMed ID: 30415272. Abstract: Cardiomyocyte infarction could lead to high morbidity and mortality worldwide. Recent studies demonstrated that Heme oxygenase-1 (HO-1) could exert cardiac protective effect and arouse attention. However, the detailed mechanism is still unclear. Our study provided evidences of the protective effect of HO-1 overexpression on cardiomyocytes against hypoxia/reoxygenation (H/R). We divided the treatment into four groups: the control group, H/R group, H/R+HO-1 group, and H/R+Null group. Immunofluorescent study was utilized to label the BrdU-positive and LC3-positive cells. Flow cytometry and TUNEL assay were used to examine the cell apoptosis. Protein levels of Bax, Bcl-2, Sirt3, beclin-1, LC3-I, and LC3-II were both measured using western blotting. The results indicated that HO-1 overexpression decreased the cell apoptosis and enhanced the cell proliferation. The level of Sirt3 and autophagy were also increased in H/R+HO-1 group compared with H/R group. However, ZnPP, a HO-1 inhibitor, and SiRNA of Sirt3 are both reversed the decrease of cell apoptosis of HO-1 overexpression. Moreover, ZnPP also decreased the expression of Sirt3 in HO-1 overexpression treatment group. In summary, HO-1 overexpression protects cardiomyocytes against H/R injury via ameliorating cell apoptosis and enhancing cell proliferation and autophagy through Sirt3 signaling pathway.[Abstract] [Full Text] [Related] [New Search]