These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal. Author: Liu E, Sun Y, Kumar N, Müchler L, Sun A, Jiao L, Yang SY, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein STB, Felser C. Journal: Nat Phys; 2018 Nov; 14(11):1125-1131. PubMed ID: 30416534. Abstract: Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 Ω-1 cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.[Abstract] [Full Text] [Related] [New Search]