These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection and characterization of ESBL-producing Escherichia coli expressing mcr-1 from dairy cows in China. Author: Zheng B, Feng C, Xu H, Yu X, Guo L, Jiang X, Song X. Journal: J Antimicrob Chemother; 2019 Feb 01; 74(2):321-325. PubMed ID: 30418551. Abstract: OBJECTIVES: To investigate the prevalence and molecular characteristics of ESBL-producing Escherichia coli (ESBL-EC) in faecal samples from dairy cows in China. METHODS: In total, 651 faecal samples were collected from cows distributed among the 10 provinces of China. Potential ESBL-EC isolates were cultured on selective medium. The clonal relatedness of the ESBL-EC isolates was assessed using MLST. WGS was conducted on 3 mcr-positive isolates and 14 additional randomly selected ESBL-EC isolates. Southern blot, S1-PFGE and conjugation were performed for mcr-1-carrying isolates. The genetic environment of the pMCR-JLF4 plasmid was also analysed. RESULTS: In total, 290 unique ESBL-EC isolates were detected from 284 cows (43.6%). Alleles of CTX-M were observed in 94.1% (273/290) of all isolates. The most prevalent genotypes observed in this study were blaCTX-M-14, blaCTX-M-15, blaCTX-M-17 and blaCTX-M-55. Differentiation of 79 STs with a polyclonal structure was accomplished using MLST. Clonal complex 10 was the most prevalent major complex detected here. Furthermore, the mcr-1 gene was detected in three isolates. The complete sequence of the mcr-1-containing pMCR-JLF4 was determined. The plasmid was 66.7 kb in length, with a genetic structure of nikA-nikB-mcr-1-pap2. Conjugation analysis confirmed that the mcr-1 gene in pMCR-JLF4 was transferable without the assistance of the ISApl1 gene. CONCLUSIONS: The data presented here suggest high prevalence of ESBL-EC in Chinese cow farms. Furthermore, it was clearly demonstrated that commensal E. coli strains can be reservoirs of blaCTX-M genes, potentially contributing to the dissemination and transfer of the mcr-1 gene to pathogenic bacteria among cows.[Abstract] [Full Text] [Related] [New Search]