These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monte Carlo on the manifold and MD refinement for binding pose prediction of protein-ligand complexes: 2017 D3R Grand Challenge.
    Author: Ignatov M, Liu C, Alekseenko A, Sun Z, Padhorny D, Kotelnikov S, Kazennov A, Grebenkin I, Kholodov Y, Kolosvari I, Perez A, Dill K, Kozakov D.
    Journal: J Comput Aided Mol Des; 2019 Jan; 33(1):119-127. PubMed ID: 30421350.
    Abstract:
    Manifold representations of rotational/translational motion and conformational space of a ligand were previously shown to be effective for local energy optimization. In this paper we report the development of the Monte-Carlo energy minimization approach (MCM), which uses the same manifold representation. The approach was integrated into the docking pipeline developed for the current round of D3R experiment, and according to D3R assessment produced high accuracy poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement further improves docking quality. The code of the Monte-Carlo minimization is freely available at https://bitbucket.org/abc-group/mcm-demo .
    [Abstract] [Full Text] [Related] [New Search]