These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Trace C₂H₂ Sensor Based on an Absorption Spectrum Technique Using a Mid-Infrared Interband Cascade Laser. Author: Mu Y, Hu T, Gong H, Ni R, Li S. Journal: Micromachines (Basel); 2018 Oct 19; 9(10):. PubMed ID: 30424463. Abstract: In this study, tunable diode laser absorption spectroscopy (TDLAS) combined with wavelength modulation spectroscopy (WMS) was used to develop a trace C₂H₂ sensor based on the principle of gas absorption spectroscopy. The core of this sensor is an interband cascade laser that releases wavelength locks to the best absorption line of C₂H₂ at 3305 cm-1 (3026 nm) using a driving current and a working temperature control. As the detected result was influenced by 1/f noise caused by the laser or external environmental factors, the TDLAS-WMS technology was used to suppress the 1/f noise effectively, to obtain a better minimum detection limit (MDL) performance. The experimental results using C₂H₂ gas with five different concentrations show a good linear relationship between the peak value of the second harmonic signal and the gas concentration, with a linearity of 0.9987 and detection accuracy of 0.4%. In total, 1 ppmv of C₂H₂ gas sample was used for a 2 h observation experiment. The data show that the MDL is low as 1 ppbv at an integration time of 63 s. In addition, the sensor can be realized by changing the wavelength of the laser to detect a variety of gases, which shows the flexibility and practicability of the proposed sensor.[Abstract] [Full Text] [Related] [New Search]