These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling. Author: Robson PM, Trivieri M, Karakatsanis NA, Padilla M, Abgral R, Dweck MR, Kovacic JC, Fayad ZA. Journal: Phys Med Biol; 2018 Nov 14; 63(22):225011. PubMed ID: 30426968. Abstract: Cardiac positron emission tomography (PET) imaging suffers from image blurring due to the constant motion of the heart that can impact interpretation. Hybrid PET/magnetic resonance (MR) has the potential to use radiation-free MR imaging to correct for the effects of cardio-respiratory motion in the PET data, improving qualitative and quantitative PET imaging in the heart. The purpose of this study was (i) to implement a MR image-based motion-corrected PET/MR method and (ii) to perform a proof-of-concept study of quantitative myocardial PET data in patients. The proposed method takes reconstructions of respiratory and cardiac gated PET data and applies spatial transformations to a single reference frame before averaging to form a single motion-corrected PET (MC-PET) image. Motion vector fields (MVFs) describing the transformations were derived from affine or non-rigid registration of respiratory and cardiac gated MR data. Eight patients with suspected cardiac sarcoidosis underwent cardiac PET/MR imaging after injection of 5 MBq kg-1 of 18F-fluorodeoxyglucose (18F-FDG). Myocardial regions affected by motion were identified by expert readers within which target-to-background ratios (TBR) and contrast-to-noise ratios (CNR) were measured on non-MC-non-gated, MC-PET, and double respiratory and cardiac gated PET images. Paired t-tests were used to determine statistical differences in quantitative uptake-measures between the different types of PET images. MC-PET images showed less blurring compared to non-MC-non-gated PET and tracer activity qualitatively aligned better with the underlying myocardial anatomy when fused with MR. TBR and CNR were significantly greater for MC-PET (2.8 ± 0.9; 21 ± 22) compared to non-MC-non-gated PET (2.4 ± 0.9, p = 0.0001; 15 ± 13, p = 0.02), while TBR was lower and CNR greater compared to double-gated PET (3.2 ± 0.9, p = 0.04; 6 ± 3, p = 0.004). This study demonstrated in a patient cohort that motion-corrected (MC) cardiac PET/MR is feasible using a retrospective MR image-based method and that improvement in TBR and CNR are achievable. MC PET/MR holds promise for improving interpretation and quantification in cardiac PET imaging.[Abstract] [Full Text] [Related] [New Search]