These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Joint-Level Analyses of the Back Squat With and Without Intraset Rest. Author: Stone JD, King AC, Goto S, Mata JD, Hannon J, Garrison JC, Bothwell J, Jagim AR, Jones MT, Oliver JM. Journal: Int J Sports Physiol Perform; 2019 May 01; 14(5):583-589. PubMed ID: 30427251. Abstract: Purpose: To provide a joint-level analysis of traditional (TS) and cluster (CS) set structure during the back-squat exercise. Methods: Eight men (24 [3] y, 177.3 [7.9] cm, 82.7 [11.0] kg, 11.9 [3.5] % body fat, and 150.3 [23.0] kg 1-repetition maximum [1RM]) performed the back-squat exercise (80%1RM) using TS (4 × 6, 2-min interset rest) and CS (4 × [2 × 3], 30-s intraset rest, 90-s interset rest), randomly. Lower-limb kinematics were collected by motion capture, as well as kinetic data by bilateral force platforms. Results: CS attenuated the loss in mean power (TS -21.6% [3.9%]; CS -12.4% [7.5%]; P = .042), although no differences in gross movement pattern (sagittal-plane joint angles) within and between conditions were observed (P ≥ .05). However, joint power produced at the hip increased from repetition (REP) 1 through REP 6 during TS, while a decrease was noted at the knee. A similar pattern was observed in the CS condition but was limited to the hip. Joint power produced at the hip increased from REP 1 through REP 3 but returned to REP 1 values before a similar increase through REP 6, resulting in differences between conditions (REP 4, P = .018; REP 5, P = .022). Conclusions: Sagittal-plane joint angles did not change in either condition, although CS elicited greater power. Differing joint power contributions (hip and knee) suggest potential central mechanism that may contribute to enhanced power output during CS and warrant further study. Practitioners should consider incorporating CS into training to promote greater power adaptations and to mitigate fatigue.[Abstract] [Full Text] [Related] [New Search]