These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endocrine regulation of gut function - a role for glucagon-like peptide-1 in the pathophysiology of irritable bowel syndrome.
    Author: O'Malley D.
    Journal: Exp Physiol; 2019 Jan; 104(1):3-10. PubMed ID: 30444291.
    Abstract:
    NEW FINDINGS: What is the topic of this review? Pathophysiological changes linked to irritable bowel syndrome (IBS) include stress and immune activation, changes in gastrointestinal microbial and bile acid profiles and sensitization of extrinsic and intrinsic gut neurons. This review explores the potential role for L-cells in these pathophysiological changes. What advances does it highlight? L-cells, which secrete glucagon-like peptide-1 in response to nutrients, microbial factors, bile acids and short-chain fatty acids, may sense IBS-related changes in the luminal environment. Glucagon-like peptide-1 can act as a hormone, a paracrine factor or a neuromodulatory factor and, through its actions on central or peripheral neurons, may play a role in gastrointestinal dysfunction. ABSTRACT: The prevalent and debilitating functional bowel disorder, irritable bowel syndrome (IBS), is characterized by symptoms that include abdominal pain, bloating, diarrhoea and/or constipation. The heterogeneity of IBS underscores a complex multifactorial pathophysiology, which is not completely understood but involves dysfunction of the bi-directional signalling axis between the brain and the gut. This axis incorporates efferent and afferent branches of the autonomic nervous system, circulating endocrine hormones and immune factors, local paracrine and neurocrine factors and microbial metabolites. L-cells, which are electrically excitable biosensors embedded in the gastrointestinal epithelium, secrete glucagon-like peptide-1 (GLP-1) in response to nutrients in the small intestine. However, they appear to function in a different manner more distally in the gastrointestinal tract, where they are activated by luminal factors including short-chain fatty acids, bile acids and microbial metabolic products, all of which are altered in IBS patients. Glucagon-like peptide-1 can also interact with the hypothalamic-pituitary-adrenal stress axis and the immune system, both of which are activated in IBS. Given that a GLP-1 mimetic has been found to alleviate acute pain symptoms in IBS patients, GLP-1 might be important in the manifestation of IBS symptoms. This review assesses the current knowledge about the role of GLP-1 in IBS pathophysiology and its potential role as a signal transducer in the microbiome-gut-brain signalling axis.
    [Abstract] [Full Text] [Related] [New Search]