These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A nanomolar detection of mercury(II) ion by a chemodosimetric rhodamine-based sensor in an aqueous medium: Potential applications in real water samples and as paper strips. Author: Patil SK, Das D. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar 05; 210():44-51. PubMed ID: 30445259. Abstract: A new promising rhodamine based colorimetric and fluorometric chemosensor, RDV has been designed and synthesized for specific detection of Hg2+ ion. It acts as highly selective "turn-on" fluorescent chemosensor for Hg2+ ion without interference from other competitive metal ions in aqueous acetonitrile medium. The drastic color change with addition of Hg2+, from colorless to pink, indicates RDV can acts as "naked-eye" indicator for Hg2+. The Hg2+ promoted selective hydrolysis of appended vinyl ether group in RDV followed by Hg2+ chelated complex formation with concomitant opening of spirolactam ring is the plausible sensing mechanism. The detailed absorption, fluorescence, 1H NMR, 13C NMR and mass spectrometry confirms the proposed sensing mechanism. The limit of detection (LOD) of Hg2+ by RDV is 136 nM indicating the high sensitivity towards Hg2+. The RDV shows consistent spectroscopic response in biological pH range 4-10. In addition to explore practical applicability of RDV, its paper strips have been made and used to detect Hg2+ in pure water solution up to 10 ppm level. Furthermore, the potential application of RDV for the sensing of Hg2+ in real water samples (tap water and drinking waters from different sources) were also monitored and demonstrated.[Abstract] [Full Text] [Related] [New Search]