These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation. Author: Gomez-Herrero E, Tobajas M, Polo A, Rodriguez JJ, Mohedano AF. Journal: J Hazard Mater; 2019 Mar 05; 365():289-296. PubMed ID: 30447636. Abstract: In this work, we assessed the potential of combining Fenton´s reagent and biological oxidation for removing the imidazolium-based ionic liquid 1-Ethyl-3-methylimidazolium chloride (EmimCl). Fenton-like oxidation was conducted at variable H2O2 doses from 20 to 100% the stoichiometric value as calculated from the theoretical chemical oxygen demand (COD). The stoichiometric H2O2 dose afforded Total Organic Carbon (TOC) conversion and COD removal of 50 and 62%, respectively. Identifying the reaction by-products formed at low hydrogen peroxide doses allowed a plausible pathway for EmimCl oxidation to be proposed. The effluents from Fenton-like oxidation at substoichiometric H2O2 doses were less ecotoxic and more biodegradable than was the parent ionic liquid. The effluent from Fenton-like oxidation with the 60% H2O2 dose (TOC conversion ≅ 41%, COD removal ≅ 31%) was subsequently subjected to an effective biological treatment that allowed complete removal of the starting compound, increased its ecotoxicity to a low-moderate level and rendered it acceptably biodegradable. Biological oxidation was performed in 8-h and 12-h cycles in a sequencing batch reactor. Combining Fenton and biological oxidation of EmimCl afforded TOC conversion and COD removal of around 90%.[Abstract] [Full Text] [Related] [New Search]