These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physicochemical Basis and Comparison of Two Type II Sex Pheromone Components Binding with Pheromone-Binding Protein 2 from Tea Geometrid, Ectropis obliqua.
    Author: Fu XB, Zhang YL, Qiu YL, Song XM, Wu F, Feng YL, Zhang JY, Li HL.
    Journal: J Agric Food Chem; 2018 Dec 19; 66(50):13084-13095. PubMed ID: 30452261.
    Abstract:
    Lepidopteran geometrid moth can produce complex Type II sex pheromone components to attract males and trigger mating behavior. Although several sex pheromone components have been identified, it remains unclear whether their physicochemical roles in sex pheromone sensing are the same. Therefore, we utilized tea geometrid ( Ectropis obliqua) as an example model to investigate and compare the physicochemical basis of two key Type II sex pheromone components, cis-6,7-epoxy-(3Z,9Z)-3,9-octadecadiene ( Z3 Z9-6,7-epo-18:Hy) and ( Z, Z, Z)-3,6,9-octadecatriene (Z3Z6Z9-18:Hy), interacting with pheromone-binding protein 2 ( EoblPBP2) from E. obliqua. Multispectral, thermodynamic, docking, and site-directed mutagenesis indicated that the major sex pheromone component Z3Z9-6,7-epo-18:Hy is more susceptible to pH-tuned than the minor component Z3Z6Z9-18:Hy, whereas Z3Z6Z9-18:Hy seems to be more susceptible to temperature and amino acid mutations than Z3Z9-6,7-epo-18:Hy. Our study suggests that different components of Type II sex pheromone play different binding characters under specific conditions in the physicochemical behavior. This deeply supplements the theoretical knowledge of Type II pheromones involved in the recognition and discrimination in the Lepidopteran sex pheromones family.
    [Abstract] [Full Text] [Related] [New Search]