These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Afferent pathways for autonomic and shivering thermoeffectors.
    Author: Nakamura K.
    Journal: Handb Clin Neurol; 2018; 156():263-279. PubMed ID: 30454594.
    Abstract:
    Body core temperature of mammals is regulated by the central nervous system, in which the preoptic area (POA) of the hypothalamus plays a pivotal role. The POA receives peripheral and central thermosensory neural information and provides command signals to effector organs to elicit involuntary thermoregulatory responses, including shivering thermogenesis, nonshivering brown adipose tissue thermogenesis, and cutaneous vasoconstriction. Cool-sensory and warm-sensory signals from cutaneous thermoreceptors, monitoring environmental temperature, are separately transmitted through the spinal-parabrachial-POA neural pathways, distinct from the spinothalamocortical pathway for perception of skin temperature. These cutaneous thermosensory inputs to the POA likely impinge on warm-sensitive POA neurons, which monitor body core (brain) temperature, to alter thermoregulatory command outflows from the POA. The cutaneous thermosensory afferents elicit rapid thermoregulatory responses to environmental thermal challenges before they impact body core temperature. Peripheral humoral signals also act on neurons in the POA to transmit afferent information of systemic infection and energy storage to induce fever and to regulate energy balance, respectively. This chapter describes the thermoregulatory afferent mechanisms that convey cutaneous thermosensory signals to the POA and that integrate the neural and humoral afferent inputs to the POA to provide descending command signals to thermoregulatory effectors.
    [Abstract] [Full Text] [Related] [New Search]