These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Author: De U, Son JY, Jeon Y, Ha SY, Park YJ, Yoon S, Ha KT, Choi WS, Lee BM, Kim IS, Kwak JH, Kim HS. Journal: Food Chem Toxicol; 2019 Jan; 123():492-500. PubMed ID: 30458268. Abstract: Plumbagin (5-hydroxy-2-methyl-1,4-naphthaquinone) has displayed antitumor activity in vitro and in animal models; however, the underlying molecular mechanisms have not been fully explored. The aim of this study was to investigate the anticancer effects of plumbagin isolated from Nepenthes alata against MCF-7 breast cancer cells. We examined the cytotoxicity, cell cycle regulation, apoptotic cell death, and generation of intracellular reactive oxygen species (ROS) in MCF-7 cells. Plumbagin exhibited potent cytotoxicity in MCF-7 cells (wild-type p53) compared to that in SK-OV-3 (null-type) human epithelial ovarian cancer cells. Specifically, plumbagin upregulated the expression of p21CIP1/WAF1 in MCF-7 cells, causing cell cycle arrest in the G2/M phase through inhibition of cyclin B1 levels. Plumbagin also significantly increased the ratio of Bax/Bcl-2 and release of cytochrome c, resulting in apoptotic cell death in MCF-7 cells. Furthermore, plumbagin dramatically increased the intracellular ROS level, whereas pretreatment with the ROS scavenger N-acetyl cysteine protected against plumbagin-induced cytotoxicity, suggesting that ROS formation plays a pivotal role in antitumor activity in MCF-7 cells. In mice bearing MCF-7 cell xenografts, plumbagin significantly reduced tumor growth and weight without apparent side effects. We therefore concluded that plumbagin exerts anticancer activity against MCF-7 cells through the generation of intracellular ROS, resulting in the induction of apoptosis via a p53-dependent pathway. This study thus identifies a new anticancer mechanism of plumbagin against p53-dependent breast cancer cells and suggests a novel strategy for overcoming of breast cancer therapy.[Abstract] [Full Text] [Related] [New Search]