These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On-orbit radiometric calibration of Suomi NPP VIIRS reflective solar bands using the Moon and solar diffuser.
    Author: Choi T, Shao X, Cao C.
    Journal: Appl Opt; 2018 Nov 10; 57(32):9533-9542. PubMed ID: 30461732.
    Abstract:
    Radiometric calibration of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands relies mainly on the onboard solar diffuser (SD) observations. The SD reflectance degrades over time due to the exposure to solar ultraviolet radiation. The uncertainties embedded in characterizing the SD bidirectional reflectance distribution function (BRDF) directly affect the accuracy of sensor radiometric calibration coefficients, such as F-factors, which are proxies of detector gain. The Moon-based radiometric calibration provides an independent way of validating and correcting the SD-based calibration. This study focuses on the comparison of the long-term SD F-factors with lunar F-factors by using two independent lunar irradiance models, i.e., Miller and Turner (MT) model and the Global Space-based Inter-Calibration System Implementation of ROLO (GIRO) model. To monitor the long-term detector response changes, the lunar F-factor differences are matched to the SD F-factors by applying the best fit scaling factors. Overall, the two lunar F-factors agree well, within 2% of one sigma standard deviation in the reflective solar bands compared to the SD F-factors. The lifetime standard deviations of difference between the GIRO-based lunar and SD F-factors show better long-term match than that of MT-based lunar F-factors. The GIRO-based lunar F-factors show increasing differences over time in comparison with the SD F-factors especially for bands M1 to M4, which indicates the underestimation of the VIIRS detector degradation by SD F-factors for these bands. Using standard SD calibration method and the GIRO-based lunar model, long-term difference between the lunar and SD F-factors shows there are 1.6%, 1.3%, 1.0%, and 0.9% increases in lunar F-factor trend for bands M1 to M4 at the end of year 2015. To mitigate these time-dependent biases, NOAA Ocean Color (OC) group and NASA VIIRS characterization support team (VCST) developed lunar correction methods and applied them to their specific products. However, the amounts of band-dependent lunar corrections are not consistent between these two teams, especially in the short-wavelength bands from M1 to M4, depending on the versions of lunar models and SD F-factor calculation algorithms. Using the standard SD F-factor algorithm and the multi-agency endorsed GIRO model, we derived lunar correction factors based on the quadratic fits between the SD and lunar F-factors. The differences with the NOAA OC group and NASA VCST team are compared and described in this study.
    [Abstract] [Full Text] [Related] [New Search]