These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimization and validation of simultaneous analyses of ecgonine, cocaine, and seven metabolites in human urine by gas chromatography-mass spectrometry using a one-step solid-phase extraction.
    Author: Fernández N, Cabanillas LM, Olivera NM, Quiroga PN.
    Journal: Drug Test Anal; 2019 Feb; 11(2):361-373. PubMed ID: 30468698.
    Abstract:
    The presence of ecgonine in urine has been proposed as an appropriate marker of cocaine use. Only a few methods have been published for their determination along with cocaine and the rest of its metabolites. Due to their high polarity and consequent solubility in water, these have low recoveries, which is why it is necessary to increase the sensitivity, by the formation of hydrochloric salts or multiderivatization of the analytes or by performing two solid-phase extractions (SPEs), considerably increasing the time and cost of the analysis. This work describes a fast and fully validated procedure for the simultaneous detection and quantification of ecgonine, ecgonine-methyl-ester, benzoylecgonine, nor-benzoylecgonine, m-hydroxybenzoylecgonine, cocaethylene, cocaine, norcocaine, and norcocaethylene in human urine (500 μL) using one SPE and simple derivatization. Separation and quantification were achieved by gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) in selected-ion monitoring mode. Quantification was performed by the addition of deuterated analogs as internal standards. Calibration curves were linear in the adopted ranges, with determination coefficients higher than 0.99. The lower limits of quantification ranged from 2.5 to 10 ng/mL. The intra- and inter-day precision, calculated in terms of relative standard deviation, were 1.2%-14.9% and 1.8%-17.9%, respectively. The accuracy, in terms of relative error, was within a ± 16.4% interval. Extraction efficiency ranged from 84% to 103%. Compared with existing methods, the procedure described herein is fast, since only one SPE is required, and cost-effective. In addition, this method provides a high recovery for ecgonine, resulting in a better alternative to the previously published methods.
    [Abstract] [Full Text] [Related] [New Search]