These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of high glucose-based peritoneal dialysis fluids on thioredoxin-interacting protein expression in human peritoneal mesothelial cells.
    Author: Wu J, Zhang YF, Li JS, Zhu GL, Bi ZM, Li XY.
    Journal: Int Immunopharmacol; 2019 Jan; 66():198-204. PubMed ID: 30471618.
    Abstract:
    BACKGROUND: It has been demonstrated that thioredoxin-interacting protein (TXNIP) interacted with NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and participated in the NLRP3 inflammasome activation. Our previous study has demonstrated that in human peritoneal mesothelial cells (HPMCs), exposure to high glucose-based peritoneal dialysis (PD) solutions induced mitochondrial reactive oxygen species (ROS) production, activation of NLRP3 inflammasome and IL-1β expression. This study aimed to investigate the effect of high glucose-based PD fluids on the TXNIP expression and the underlying mechanisms by which TXNIP-NLRP3 interaction mediates the inflammatory injury to HPMCs in high glucose-based PD fluids conditions. METHODS: TXNIP gene and protein expression was detected by real-time polymerase chain reaction (RT-PCR) and immunoblot. Immunoprecipitation was used to evaluate the interaction between TRX1 and TXNIP, TXNIP and NLRP3. ROS production and IL-1β expression was examined by flow cytometry and immunoblot and enzyme-linked immunosorbent assay (ELISA) respectively. RESULTS: It was identified that high glucose-based PD solutions enhance the level of TXNIP gene and protein in cultured HPMCs and a rat-based PD model. We also found that ROS generation induced by high glucose-based PD solutions disrupts the TRX1-TXNIP association, while promoting the binding of TXNIP to NLRP3 in HPMCs. Furthermore, the application of a ROS inhibitor (APDC) to HPMCs blocked the high glucose-based PD solution-induced TXNIP-NLRP3 binding, in addition to ROS production and IL-1β expression. CONCLUSION: The results of the present study revealed a novel mechanism underlying high glucose-containing PD-mediated peritoneal inflammatory injury, supporting the attenuation of ROS generation as a potential therapeutic strategy to alleviate such pathology.
    [Abstract] [Full Text] [Related] [New Search]