These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of an anti-Gram-negative bacteria agent disrupting the interaction between lipopolysaccharide transporters LptA and LptC. Author: Zhang X, Li Y, Wang W, Zhang J, Lin Y, Hong B, You X, Song D, Wang Y, Jiang J, Si S. Journal: Int J Antimicrob Agents; 2019 Apr; 53(4):442-448. PubMed ID: 30476569. Abstract: INTRODUCTION: The emergence of drug-resistant Gram-negative bacteria is a serious clinical problem that causes increased morbidity and mortality. However, the slow discovery of new antibiotics is unable to meet the need for treating bacterial infections caused by drug-resistant strains. Lipopolysaccharide (LPS) is synthesized in the cytoplasm and transported to the cell envelope by the LPS transport (Lpt) system. LptA and LptC form a complex that transports LPS from the inner membrane to the outer membrane. METHODS: This study performed a screen for agents that disrupt the transport of LPS in Gram-negative bacteria Escherichia coli. It established a yeast two-hybrid system to detect LptA-LptC interaction and used this system to identify a compound, IMB-881, that blocks this interaction and shows antibacterial activity. RESULTS: This study demonstrated that the IMB-881 compound specifically binds to LptA to disrupt LptA-LptC interaction using surface plasmon resonance assay. Overproduction of LptA protein but not that of LptC lowered the antibacterial activity of IMB-881. Strikingly, Escherichia coli cells accumulated 'extra' membrane material in the periplasm and exhibited filament morphology after treatment with IMB-881. CONCLUSION: This study successfully identified, by using a yeast two-hybrid system, an antibacterial agent that likely blocks LPS transport in Gram-negative bacteria.[Abstract] [Full Text] [Related] [New Search]