These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Copper ion-assisted gold nanoparticle aggregates for electrochemical signal amplification of lipopolysaccharide sensing.
    Author: Wang N, Dai H, Sai L, Ma H, Lin M.
    Journal: Biosens Bioelectron; 2019 Feb 01; 126():529-534. PubMed ID: 30476884.
    Abstract:
    A signal amplification electrochemical aptasensor for ultrasensitive detection of lipopolysaccharide (LPS) was fabricated. The sensor was constructed with a probe of LPS aptamer and a copper ions-mediated gold nanoparticles aggregate (Cu/Au NA) as a signal amplification material. The Cu/Au NAs comprising copper ions (Cu2+) and L-cysteine modified AuNPs were fabricated by a self-assembly process. For functionalization of the electrode, the carboxylic group of a mercaptoacetic acid self-assembly layer was covalently coupled with the amine group of the aptamer. The aptamer with high specificity and affinity can effectively gather the dissociative LPS firstly, and the Cu/Au NAs were captured by anionic groups of the carbohydrate portions from LPS molecules based on the specific interactions. With the employment of the sandwich-type biosensor, the strategy can significantly amplify the electrochemical signal for determination of trace amount of LPS. The sensing performance of the electrochemical sensor was investigated by differential pulse voltammetry (DPV) and the stripping peak currents of Cu re-oxidized to Cu2+ was used to monitor the level of LPS. The electrochemical aptasensor exhibited excellent sensitivity toward LPS with a detection limit of 0.033 pg/mL (S/N = 3). The biosensor also exhibited a high specificity toward LPS in the presence of other common interfering substances and was easily regenerated. Furthermore, the fabricated biosensor showed a good practical application for LPS determination in human serum samples.
    [Abstract] [Full Text] [Related] [New Search]