These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: "Electron-Sharing" Mechanism Promotes Co@Co3O4/CNTs Composite as the High-Capacity Anode Material of Lithium-Ion Battery.
    Author: Zhao Y, Dong W, Riaz MS, Ge H, Wang X, Liu Z, Huang F.
    Journal: ACS Appl Mater Interfaces; 2018 Dec 19; 10(50):43641-43649. PubMed ID: 30488690.
    Abstract:
    Hybridization of nanostructured cobalt oxides with carbon nanotubes (CNTs) is considered to be an operative approach to harvest high-performance anode material for lithium-ion batteries (LIBs). On the other hand, there are numerous related works, most of which adopted a "post-combination" strategy, which is not only complicated but also ecologically unpromising for using toxic acid for surface modification of CNTs. Herein, we productively fabricate Co@Co3O4/CNTs nanocomposite with excellent conductivity through arc discharge following low-temperature oxidation in air. As the anode material for LIBs, this nanocomposite shows an exceedingly high reversible capacity of 820 mA h g-1 at a current density of 0.2 A g-1 after 250 cycles, much higher than its theoretical capacity. The rate performance of the material is also outstanding, with a capacity of 760 mA h g-1 after 350 cycles at 1 A g-1 (103% of the initial capacity) and 529 mA h g-1 after 600 cycles at 2 A g-1. X-ray photoelectron spectroscopy tests are accomplished to disclose the true cause of extra capacity. And for the first time, we propose an "electron-sharing" storage mode, where extra electrons and Li+ can separate and be stored at the interface of cobalt metal/Li2O. This not only gives a reasonable revelation for this unusual capacity exceeding the theoretical value but also directs the capacitor-like electrochemical behavior extra capacity.
    [Abstract] [Full Text] [Related] [New Search]