These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing the Thermostability of Highly Active and Glucose-Tolerant β-Glucosidase Ks5A7 by Directed Evolution for Good Performance of Three Properties. Author: Cao L, Li S, Huang X, Qin Z, Kong W, Xie W, Liu Y. Journal: J Agric Food Chem; 2018 Dec 19; 66(50):13228-13235. PubMed ID: 30488698. Abstract: A high-performance β-glucosidase for efficient cellulose hydrolysis needs to excel in thermostability, catalytic efficiency, and resistance to glucose inhibition. However, it is challenging to achieve superb properties in all three aspects in a single enzyme. In this study, a hyperactive and glucose-tolerant β-glucosidase Ks5A7 was employed as the starting point. Four rounds of random mutagenesis were then performed, giving rise to a thermostable mutant 4R1 with five amino acid substitutions. The half-life of 4R1 at 50 °C is 8640-fold that of Ks5A7 (144 h vs 1 min). Meanwhile, 4R1 had a higher specific activity (374.26 vs 243.18 units·mg-1) than the wild type with a similar glucose tolerance. When supplemented to Celluclast 1.5L, the mutant significantly enhanced the hydrolysis of pretreated sugar cane bagasse, improving the released glucose concentration by 44%. With excellent performance in thermostability, activity, and glucose tolerance, 4R1 will serve as an exceptional catalyst for industrial applications.[Abstract] [Full Text] [Related] [New Search]