These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic regulation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. Author: Grant S, Roberts CF, Lamb H, Stout M, Hawkins AR. Journal: J Gen Microbiol; 1988 Feb; 134(2):347-58. PubMed ID: 3049934. Abstract: A large number of quinic acid non-utilizing qut mutants of Aspergillus nidulans deficient in the induction of all three quinic acid specific enzymes have been analysed. One class the qutD mutants, are all recessive and are non-inducible at pH 6.5 due to inferred deficiency in a quinate ion permease. Two regulatory genes have been identified. The QUTA gene encodes an activator protein since most qutA mutants are recessive and non-inducible although a few fully dominant mutants have been found. The QUTR gene encodes a repressor protein since recessive mutations are constitutive for all three enzyme activities. Rare dominant non-inducible mutants which revert readily to yield a high proportion of constitutive strains are inferred to be qutR mutants defective in binding the inducer. The gene cluster has been mapped in the right arm of chromosome VIII in the order: centromere - greater than 50 map units - ornB - 12 map units - qutC (dehydratase)-0.8 map units-qutD (permease), qutB (dehydrogenase), qutE (dehydroquinase), qutA (activator)-4.4 map units - qutR (repressor)-20 map units - galG. This organization differs from that of the qa gene cluster in Neurospora crassa, particularly in the displacement of qutC and qutR.[Abstract] [Full Text] [Related] [New Search]