These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electro-enhanced solid-phase microextraction of bisphenol A from thermal papers using a three-dimensional graphene coated fiber.
    Author: Zhang J, Wen CY, Li Q, Meteku BE, Zhao R, Cui B, Li X, Zeng J.
    Journal: J Chromatogr A; 2019 Jan 25; 1585():27-33. PubMed ID: 30502917.
    Abstract:
    Three-dimensional (3-D) graphene was synthesized by the assembly of graphene oxide with phenolic resin, followed by carbonization in argon. The as-synthesized 3-D graphene has excellent conductivity, good thermal stability, large specific surface area (1511 m² g-1) and pore volume (0.90 cm3 g-1). By immobilizing the 3-D graphene onto the stainless steel wire (SSW), we obtained a 3-D graphene coated fiber that was then used as a working electrode for electro-enhanced SPME, which shows a 3.2-fold improvement of extraction efficiency for bisphenol A (BPA) over that of traditional SPME. Coupled to gas chromatography, the method was developed to the determination of BPA with good linearity (R2 = 0.9935) in the range of 0.1-10 μg mL-1. The limit of detection was calculated to be 0.006 μg mL-1 based on the signal-to-noise of 3. The proposed method was applied for the analysis of three kinds of thermal papers with BPA being detected in all samples (0.696-3.78 mg g-1). Recovery tests were performed to validate the reliability of the method, and the recoveries were found between 81.9% and 119% with relative standard deviations lower than 4.8%.
    [Abstract] [Full Text] [Related] [New Search]