These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Uterine histopathological changes induced by acute administration of tamoxifen and its modulation by sex steroid hormones.
    Author: Sá SI, Maia J, Bhowmick N, Silva SM, Silva A, Correia-da-Silva G, Teixeira N, Fonseca BM.
    Journal: Toxicol Appl Pharmacol; 2019 Jan 15; 363():88-97. PubMed ID: 30503537.
    Abstract:
    The endometrium is a particular sensitive target tissue for estradiol that is able to promptly modify its structure. Tamoxifen (TAM), a selective estrogen receptor modulator, was shown to promote a spectrum of uterine abnormalities, though the morphological and stereological effects of this drug in uterus is not clear. In this way, we have used an established model of ovariectomy followed by estradiol benzoate (EB) or TAM treatment and analyzed their effects in uterine histopathology and proliferation. Administration of EB promotes the unfolding and proliferation of the endometrium stroma, increasing uterine volume. No changes were found in uterine histomorphometric analysis upon TAM administration, except in the thickness of the luminal epithelium and endometrium layer. The latter may result from increased complexity and glandular volume density also observed in TAM treatment. In addition, EB induced PAX2 expression, an oncogene commonly found in epithelial tumors of the female genital tract, an effect that was weakened by previous TAM administration. Although treatments did not affect stroma cells proliferating index, in epithelial cells and, contrary to TAM, EB increased PCNA and not Ki67 expression. Collectively, our data suggest that the acute administration of TAM induces ERα-dependent atrophy of the uterine tissue and decreased the expression of proliferating cellular markers. On the contrary, if administered prior to EB, TAM is able to attenuate the action of the hormone in uterine morphology and biochemistry.
    [Abstract] [Full Text] [Related] [New Search]