These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cr(VI)-Induced Autophagy Protects L-02 Hepatocytes from Apoptosis Through the ROS-AKT-mTOR Pathway.
    Author: Liang Q, Xiao Y, Liu K, Zhong C, Zeng M, Xiao F.
    Journal: Cell Physiol Biochem; 2018; 51(4):1863-1878. PubMed ID: 30504711.
    Abstract:
    BACKGROUND/AIMS: Hexavalent chromium [Cr(VI)] pollution has become a global concern for both ecosystems and human health. Our previous study revealed Cr(VI) could induce both apoptosis and autophagy in L-02 hepatocytes. Here, we sought to explore the underlying mechanism of Cr(VI)-induced autophagy and its exact role in cell death. METHODS: Autophagy ultrastructure was observed under transmission electron microscope (TEM), autophagy flux was measured with double-tagged mCherry-green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) assay, long-lived protein degradation assay, and LC3II expression assay in the presence of lysosomal inhibitor, bafilomycin A1 (BafA1). Reactive oxygen species (ROS) level was determined using fluorescent probe dichloro-dihydrofluorescein diacetate (DCFH-DA). The expression levels of Beclin-1, LC3, p62/ SQSTM1, and AKT-mammalian target of rapamycin (mTOR) pathway-related molecules including phosphorylation (p)-AKT, AKT, p-mTOR, and mTOR were examined using real-time polymerase chain reaction (RT-PCR) and western blotting. Apoptosis was determined using Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. RESULTS: Our results demonstrated Cr(VI) exposure activated autophagy in L-02 hepatocytes, as evidenced by the accumulation of autophagosomes, the increase of LC3-II and degradation of p62/ SQSTM1, and the enhanced overall degradation of proteins. We also confirmed Cr(VI)-induced LC3-II elevation mainly came from autophagy induction rather than lysosomal degradation impairment. ROS-AKT-mTOR pathway was associated with Cr(VI)-induced autophagy, and ROS scavenger N-acetylcysteine (NAC) pretreatment inhibited Cr(VI)-induced autophagy by alleviating the inhibition of the AKT-mTOR pathway. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine diphosphate (CDP) promoted Cr(VI)-induced apoptotic death. CONCLUSION: These findings indicated Cr(VI)-induced autophagy protected L-02 hepatocytes from apoptosis through the ROS-AKT-mTOR pathway.
    [Abstract] [Full Text] [Related] [New Search]