These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CRISPR/Cas9-Mediated Knockout of DNAJC14 Verifies This Chaperone as a Pivotal Host Factor for RNA Replication of Pestiviruses. Author: Isken O, Postel A, Bruhn B, Lattwein E, Becher P, Tautz N. Journal: J Virol; 2019 Mar 01; 93(5):. PubMed ID: 30518653. Abstract: Pestiviruses like bovine viral diarrhea virus (BVDV) are a threat to livestock. For pestiviruses, cytopathogenic (cp) and noncytopathogenic (noncp) strains are distinguished in cell culture. The noncp biotype of BVDV is capable of establishing persistent infections, which is a major problem in disease control. The noncp biotype rests on temporal control of viral RNA replication, mediated by regulated cleavage of nonstructural protein 2-3 (NS2-3). This cleavage is catalyzed by the autoprotease in NS2, the activity of which depends on its cellular cofactor, DNAJC14. Since this chaperone is available in small amounts and binds tightly to NS2, NS2-3 translated later in infection is no longer cleaved. As NS3 is an essential constituent of the viral replicase, this shift in polyprotein processing correlates with downregulation of RNA replication. In contrast, cp BVDV strains arising mostly by RNA recombination show highly variable genome structures and display unrestricted NS3 release. The functional importance of DNAJC14 for noncp pestiviruses has been established so far only for BVDV-1. It was therefore enigmatic whether replication of other noncp pestiviruses is also DNAJC14 dependent. By generating bovine and porcine DNAJC14 knockout cells, we could show that (i) replication of 6 distinct noncp pestivirus species (A to D, F, and G) depends on DNAJC14, (ii) the pestiviral replicase NS3-5B can assemble into functional complexes in the absence of DNAJC14, and (iii) all cp pestiviruses replicate their RNA and generate infectious progeny independent of host DNAJC14. Together, these findings confirm DNAJC14 as a pivotal cellular cofactor for the replication and maintenance of the noncp biotype of pestiviruses.IMPORTANCE Only noncp pestivirus strains are capable of establishing life-long persistent infections to generate the virus reservoir in the field. The molecular basis for this biotype is only partially understood and only investigated in depth for BVDV-1 strains. Temporal control of viral RNA replication correlates with the noncp biotype and is mediated by limiting amounts of cellular DNAJC14 that activate the viral NS2 protease to catalyze the release of the essential replicase component NS3. Here, we demonstrate that several species of noncp pestiviruses depend on DNAJC14 for their RNA replication. Moreover, all cp pestiviruses, in sharp contrast to their noncp counterparts, replicate independently of DNAJC14. The generation of a cp BVDV in the persistently infected animal is causative for onset of mucosal disease. Therefore, the observed strict biotype-specific difference in DNAJC14 dependency should be further examined for its role in cell type/tissue tropism and the pathogenesis of this lethal disease.[Abstract] [Full Text] [Related] [New Search]