These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoinactivation of the Staphylococcus aureus Lactose-Specific EIICB Phosphotransferase Component with p-azidophenyl-β-D-Galactoside and Phosphorylation of the Covalently Bound Substrate. Author: Sossna-Wunder G, Hengstenberg W, Briozzo P, Deutscher J. Journal: J Mol Microbiol Biotechnol; 2018; 28(3):147-158. PubMed ID: 30522128. Abstract: BACKGROUND: The phosphoenolpyruvate (PEP):lactose phosphotransferase system of Staphylococcus aureus transports and phosphorylates lactose and various phenylgalactosides. Their phosphorylation is catalyzed by the Cys476-phosphorylated EIIB domain of the lactose-specific permease enzyme IICB (EIICBLac). Phosphorylation causes the release of galactosides bound to the EIIC domain into the cytoplasm by a mechanism not yet understood. RESULTS: Irradiation of a reaction mixture containing the photoactivatable p-azidophenyl-β-D-galactopyranoside and EIICBLac with UV light caused a loss of EIICBLac activity. Nevertheless, photoinactivated EIICBLac could still be phosphorylated with [32P]PEP. Proteolysis of photoinactivated [32P]P-EIICBLac with subtilisin provided an 11-kDa radioactive peptide. Only the sequence of its first three amino acids (-H-G-P-, position 245-247) could be determined. They are part of the substrate binding pocket in EIICs of the lactose/cellobiose PTS family. Surprisingly, while acid treatment caused hydrolysis of the phosphoryl group in active [32P]P∼EIICBLac, photoinactivated [32P]P-EIICBLac remained strongly phosphorylated. CONCLUSION: Phosphorylation of the -OH group at C6 of p-nitrenephenyl-β-D-galactopyranoside covalently bound to EIICLac by the histidyl-phosphorylated [32P]P∼EIIBLac domain is a likely explanation for the observed acid resistance. Placing p-nitrenephenyl-β-D-galactopyranoside into the active site of modelled EIICLac suggested that the nitrene binds to the -NH- group of Ser248, which would explain why no sequence data beyond Pro247could be obtained.[Abstract] [Full Text] [Related] [New Search]