These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Emergence of topological phases by stacking of two-dimensional lattices with nonsymmorphic symmetry.
    Author: Chiu PM, Huang CY, Li WJ, Lee TK.
    Journal: J Phys Condens Matter; 2019 Jan 23; 31(3):035501. PubMed ID: 30523842.
    Abstract:
    Topological semimetals have a variety of phases, whose Fermi surfaces can be nodal points, nodal lines and nodal loops. Here we construct four classes of 3D minimal models via vertically stacking a 2D nonsymmorphic lattice with and without breaking crystalline symmetries. As a result, four distinct topological phases can be generated in our minimal model, such as Dirac nodal line semimetals, Weyl nodal line semimetals, unconventional Weyl semimetals with topological charge [Formula: see text], and weak topological insulators. Unexpectedly, Weyl nodal loops are generated without mirror symmetry protection, where nontrivial 'drumhead' surface states emerge within the loops.
    [Abstract] [Full Text] [Related] [New Search]