These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dosimetry of indigenously developed 177Lu patch source for surface brachytherapy-Experimental and Monte Carlo methods. Author: Sahoo S, Shrivastava V, Selvam TP, Bakshi AK, Kumar R, Rama P, Datta D, Chinnaesakki S, Saxena SK, Kumar Y, Dash A. Journal: J Radiol Prot; 2019 Jan; 39(1):54-70. PubMed ID: 30523912. Abstract: This paper describes the evaluation of dosimetry characteristics of an in-house developed 177Lu skin patch source for treatment of non-melanoma skin cancer. A 177Lu skin patch source based on Nafion-115 membrane backbone containing 3.46 ± 0.01 mCi of activity was used. Activity measurement of the patch source was based on gamma ray spectrometry using a HPGe detector. The efficiencies of the HPGe detector were fitted using an orthogonal polynomial function. The absorbed dose rate to water at 5 μm depth in water was determined using an extrapolation chamber, EBT3 Gafchromic film and compared with Monte Carlo methods. The correction factors such as Bragg-Gray stopping power ratio of water-to-air and chamber wall material being different from water, needed to be applied on measurements for establishing the dose rate at 5 μm depth, were calculated using the Monte Carlo method. Absorbed dose rate at 5 μm depth in water (surface dose rate) measured using an extrapolation chamber and EBT3 Gafchromic film were 9.9 ± 0.7 and 8.2 ± 0.1 Gy h-1 mCi-1 respectively for the source activity of 3.46 ± 0.01 mCi. The surface dose rate calculated using the Monte Carlo method was 8.7 ± 0.2 Gy h-1 mCi-1, which agrees reasonably well with measurement. The measured dose rate per mCi offers scope for ascertaining treatment time required to deliver the dose for propitious therapeutic outcome. Additionally, on-axis depth dose and lateral dose profiles at 5 μm and 1 mm depth in water phantom were also calculated using the Monte Carlo method.[Abstract] [Full Text] [Related] [New Search]