These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress contributes to lead-induced nephrotoxicity.
    Author: Wang MG, Fan RF, Li WH, Zhang D, Yang DB, Wang ZY, Wang L.
    Journal: Biochim Biophys Acta Mol Cell Res; 2019 Apr; 1866(4):713-726. PubMed ID: 30528975.
    Abstract:
    Lead (Pb) is a known nephrotoxicant that causes damage to proximal tubular cells. PERK pathway plays an important role in the pathogenesis of renal diseases, but its role in Pb-induced nephrotoxicity remains largely unknown. In this study, data showed that Pb could induce ER stress as shown by increased phosphorylation of PERK with subsequent activation of the eIF2α-ATF4-CHOP axis in primary rat proximal tubular (rPT) cells, indicating the activation of PERK-eIF2α-ATF4-CHOP pathway due to excessive ER stress. Pb-activated PERK pathway can be effectively inhibited by 4-phenylbutyric acid and PERK gene silencing, respectively; whereas continuously up-regulated by tunicamycin (TM) treatment. Moreover, Pb-induced apoptosis and inhibition of autophagic flux in rPT cells were significantly augmented and aggravated by co-treatment with TM, respectively. Pharmacological or genetic inhibition of the PERK pathway results in alleviation of apoptosis and restoration of autophagy inhibition in Pb-exposed rPT cells. Mechanistically, activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress in rPT cells leads to Pb-induced apoptosis and blockage of autophagic flux, resulting in nephrotoxicity.
    [Abstract] [Full Text] [Related] [New Search]