These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Author: Zhang L, Li S, Xin J, Ma H, Pang H, Tan L, Wang X. Journal: Mikrochim Acta; 2018 Dec 10; 186(1):9. PubMed ID: 30535722. Abstract: A Cr-based metal-organic framework MIL-101(Cr) was used to load platinum nanoparticles (PtNPs) that were placed on a glassy carbon electrode (GCE). The modified GCE was used as a non-enzymatic xanthine sensor. Compared to bare GCE, it requires a strongly decreased working potential and an increased signal current for xanthine oxidation. This is due to the crystalline ordered structure and large specific surface of the MIL-101(Cr), and to the high conductivity of the Pt NPs. Differential pulse voltammetry (DPV) shows the sensor to have a wide linear range (0.5 - 162 μM), a low detection limit (0.42 μM), and high selectivity. It was applied to the simultaneous determination of dopamine, uric acid, xanthine and hypoxanthine at working potentials of 0.13, 0.28, 0.68 and 1.05 V, respectively (vs. Ag/AgCl) and to quantify xanthine in spiked serum samples. Graphical abstract This is the first report of non-enzymatic xanthine electrochemical sensor based on metal-organic framework loaded with nanoparticles.[Abstract] [Full Text] [Related] [New Search]