These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypoxia-inducible factor-2α directly promotes BCRP expression and mediates the resistance of ovarian cancer stem cells to adriamycin. Author: He M, Wu H, Jiang Q, Liu Y, Han L, Yan Y, Wei B, Liu F, Deng X, Chen H, Zhao L, Wang M, Wu X, Yao W, Zhao H, Chen J, Wei M. Journal: Mol Oncol; 2019 Feb; 13(2):403-421. PubMed ID: 30536571. Abstract: Ovarian cancer stem cells (OCSCs) are sources of tumor chemoresistance and recurrence. A hypoxic microenvironment contributes to the chemoresistance of cancer stem cells (CSCs), but the underlying mechanism is not fully understood yet. Here, we show that increased HIF-2α expression is associated with enhanced stemness of OCSCs and poor outcomes in ovarian cancer patients. OVCAR-3 and CAOV-3 sphere-forming (OVCAR-3 S and CAOV-3 S) cells with OCSC-like properties showed strong resistance to adriamycin (ADR). Hypoxia (1% O2 ) induced high expression of both HIF-1α and especially HIF-2α, and increased the resistance of OVCAR-3 S and CAOV-3 S cells to ADR. Notably, treatment with ADR further increased the expression of HIF-2α, but not that of HIF-1α. Knockdown of HIF-2α expression substantially attenuated the resistance of OVCAR-3 S and CAOV-3 S cells to ADR, and the HIF-2α overexpression had the opposite effect. Furthermore, in mouse models xenografted with OCSCs, HIF-2α depletion significantly inhibited tumor growth and sensitized OCSCs to ADR in vivo. Mechanistically, HIF-2α directly promotes transcription/expression of BCRP, a gene encoding a transporter protein responsible for pumping drugs (e.g., ADR) out of cells, which in turn increases drug resistance due to increased drug transportation. Collectively, our studies reveal a novel drug-resistant mechanism in ovarian cancer by which hypoxia (and ADR treatment)-induced HIF-2α overexpression endows OCSCs with resistance to ADR by promoting BCRP expression and ADR transportation. Therefore, targeting the HIF-2α/BCRP axis holds therapeutic potential for treating drug-resistant ovarian cancer.[Abstract] [Full Text] [Related] [New Search]