These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Eimeria challenge adversely affected long bone attributes linked to increased resorption in 14-day-old broiler chickens.
    Author: Akbari Moghaddam Kakhki R, Lu Z, Thanabalan A, Leung H, Mohammadigheisar M, Kiarie E.
    Journal: Poult Sci; 2019 Apr 01; 98(4):1615-1621. PubMed ID: 30544238.
    Abstract:
    There is limited information on the effects of enteric pathogen on bone quality in rapidly growing broiler chicks. We examined tibia and femur attributes (length, diameter, relative weight of ash content [AC] to the BW, ash concentration [AP]) and serum bone-turnover markers including receptor activator of nuclear factor kappa-B ligand (RANKL) for resorption, alkaline phosphatase (ALP) for mineralization, and selected serum metabolites in 14-day-old broilers challenged with Eimeria. A total of 160 (80 males and 80 females) 1-day-old Ross × Ross 708 chicks were used. Based on BW, birds were placed within sex in cages (5 birds per cage) and fed chick starter diets to day 9 of age. On day 9, half of the cages were orally gavaged with 1 mL of Eimeria culture (100,000 oocysts of E. acervulina and 25,000 oocysts of E. maxima) and the other half (unchallenged control) received 1 mL 0.9% saline in distilled water. On day 14, 2 birds were randomly selected and necropsied for intestinal lesion score, blood, tibia, and femur samples. Data were analyzed in a 2 (challenged vs. unchallenged) × 2 (males vs. females) factorial arrangement. There was no interaction (P > 0.05) between Eimeria and sex on any measurement. Whereas there were no intestinal lesions in unchallenged birds, Eimeria resulted in lesion score (0 to 4) of 3.35, 2.59 and 0.11 in duodenum, jejunum and ileum, respectively. Eimeria challenge decreased (P < 0.05) tibia AC and AP by 10 and 8.2%, respectively but had no (P > 0.10) effect on femur attributes. Generally, males showed (P < 0.05) longer and wider bones with more AC compared with the female. Circulating serum RANKL concentration increased (P = 0.017) in response to Eimeria challenge and was negatively correlated with tibia AC (-0.731; P = 0.021). Our findings showed that Eimeria damage to the intestinal physiology had adverse effects on long bone attributes linked to increased resorption.
    [Abstract] [Full Text] [Related] [New Search]