These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biomaterial-induced multinucleated giant cells express proinflammatory signaling molecules: A histological study in humans.
    Author: Zhang Y, Al-Maawi S, Wang X, Sader R, James Kirkpatrick C, Ghanaati S.
    Journal: J Biomed Mater Res A; 2019 Apr; 107(4):780-790. PubMed ID: 30549210.
    Abstract:
    The biomaterials physicochemical characteristics influence their cellular reaction, degradation and regenerative capacities. Macrophages and multinucleated giant cells (MNGCs) are observed in the augmentation area of biomaterials. This study, for the first time, evaluated the polarization pattern of macrophages and MNGCs in response to two different bone substitute materials (synthetic bone substitute material [SBSM] = NanoBone vs. xenogeneic bone substitute material [XBSM] = Bio-Oss) in human bone biopsies compared to non-augmented bone (control). Histomorphometrical analysis of the polarization in proinflammatory (M1) and anti-inflammatory (M2) cells was performed using different immunohistochemical markers: CD-68 = macrophages; CCR-7 and Cox-2 (M1) and CD-206 and CD-163 (M2) and tartrate-resistant acid phosphatase (TRAP). The macrophage polarization pattern in SBSM showed a significantly higher number of M1 cells than did XBSM and non-augmented bone. XBSM induced a significantly higher number of CD-206-positive macrophages than SBSM did. No significant difference was found between XBSM and the non-augmented bone. MNGCs expressed CD-68 and TRAP. In both test-groups, MNGCs showed a high proinflammatory character (CCR-7 and Cox-2-positive) and their number in the SBSM group was significantly higher than that of XBSM. The tissue distribution showed a significantly low percentage of the remaining biomaterial in SBSM compared to XBSM. Within the limitations of this study, these findings show that MNGCs exhibit a rather proinflammatory character and lead to biomaterial degradation, once they are induced in a high number. The premature degradation of bone substitute materials is compensated with a high percentage of connective tissue and not new bone formation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 780-790, 2019.
    [Abstract] [Full Text] [Related] [New Search]