These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hepatoprotective benefits of vitamin C against perfluorooctane sulfonate-induced liver damage in mice through suppressing inflammatory reaction and ER stress.
    Author: Su M, Liang X, Xu X, Wu X, Yang B.
    Journal: Environ Toxicol Pharmacol; 2019 Jan; 65():60-65. PubMed ID: 30551094.
    Abstract:
    Our previous studies show that vitamin C (VC) plays promising hepatoprotection in mice. Intrahepatic exposure of perfluorooctane sulfonate (PFOS) can induce dose-dependent cytotoxicity. However, pharmacology-based assessment of VC on PFOS remains uninvestigated. This study aimed to evaluate the therapeutic benefits of VC on inhibiting PFOS-induced liver steatosis in mice, followed by representative biochemical analysis and immunoassay. As results, VC was beneficial for reduced PFOS-induced liver damages, as showed in reductions of serological levels of transaminases (ALT and AST), lipids (TG and TC), fasting glucose and insulin, inflammatory cytokines (TNF-α and IL6), while content of fibroblast growth factor 21 (FGF21) in serum was increased. In addition, VC reduced histiocytic changes of PFOS-lesioned livers, as revealed in reduced TNF-α-labeled cells and increased FGF21-labeled cells in immunofluorescence assay. Further, intrahepatic expressions of endoplasmic reticulum (ER) stress-based ATF6, eIF2α, GRP78, XBP1 proteins were down-regulated by treatments of VC. Taken together, our preliminary findings set forth that VC exerts pharmacological benefits against PFOS-induced liver steatosis in mice, and the underlying biological mechanism may be linked to suppressing hepatocellular inflammatory reaction and ER stress.
    [Abstract] [Full Text] [Related] [New Search]