These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: α, β-Amyrin, a pentacyclic triterpenoid from Protium heptaphyllum suppresses adipocyte differentiation accompanied by down regulation of PPARγ and C/EBPα in 3T3-L1 cells.
    Author: de Melo KM, de Oliveira FTB, Costa Silva RA, Gomes Quinderé AL, Marinho Filho JDB, Araújo AJ, Barros Pereira ED, Carvalho AA, Chaves MH, Rao VS, Santos FA.
    Journal: Biomed Pharmacother; 2019 Jan; 109():1860-1866. PubMed ID: 30551441.
    Abstract:
    Previous studies have reported the anti-obesity effects of α, β-Amyrin in high fat-fed mice. This study aimed to evaluate whether α, β-Amyrin has an anti-adipogenic effect in 3T3-L1 murine adipocytes and to explore the possible underlying mechanisms. 3T3-L1 pre-adipocytes were differentiated in a medium containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthine. Cytotoxicity of α, β-Amyrin was assessed by MTT assay. Lipid content in adipocytes was determined by Oil-Red O staining. In addition, the protein expression levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding proteins alpha (C/EBPα), beta (C/EBPβ), and delta (C/EBPδ) and glucose transporter 4 (GLUT4) were determined by qRT-PCR and western blot analysis. Oil-Red O staining revealed markedly reduced fat accumulation by α, β-Amyrin (6.25-50 μg/mL) without affecting cell viability. Furthermore, our results indicate that α, β-Amyrin can significantly suppress the adipocyte differentiation by downregulating the expression levels of adipogenesis-related key transcription factors such as PPARγ and C/EBPα, but not C/EBPβ or C/EPBδ. In addition, the protein expression of membrane GLUT4 in 3T3- L1 adipocytes treated with α, β-Amyrin was significantly higher than in control cells, indicating that α, β-Amyrin augments glucose uptake. These findings suggest that α, β-Amyrin exerts an anti-adipogenic effect principally via modulation of lipid and carbohydrate metabolism in 3T3-L1cells. The present in vitro findings, taken together with our earlier observation of the anti-obesity effect in vivo, suggest that α, β-Amyrin can be developed as a new therapeutic agent for treatment and prevention of obesity.
    [Abstract] [Full Text] [Related] [New Search]