These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Δ9-Tetrahydrocannabinol upregulates fatty acid 2-hydroxylase (FA2H) via PPARα induction: A possible evidence for the cancellation of PPARβ/δ-mediated inhibition of PPARα in MDA-MB-231 cells. Author: Hirao-Suzuki M, Takeda S, Watanabe K, Takiguchi M, Aramaki H. Journal: Arch Biochem Biophys; 2019 Feb 15; 662():219-225. PubMed ID: 30553767. Abstract: Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated nuclear transcription factors, with three characterized subtypes: PPARα, PPARβ/δ, and PPARγ. The biological correlation between the two PPAR subtypes PPARα and γ and carcinogenesis is well-characterized; however, substantially less is known about the biological functions of PPARβ/δ. PPARβ/δ has been reported to repress transcription when PPARβ/δ and PPARα or PPARγ are simultaneously expressed in some cells, and MDA-MB-231 cells express functional levels of PPARβ/δ. We have previously reported that Δ9-tetrahydrocannabinol (Δ9-THC), a major cannabinoid component of the drug-type cannabis plant, can stimulate the expression of fatty acid 2-hydroxylase (FA2H) via upregulation of PPARα expression in human breast cancer MDA-MB-231 cells. Although the possibility of an inhibitory interaction between PPARα and PPARβ/δ has not been demonstrated in MDA-MB-231 cells, we reasoned if this interaction were to exist, Δ9-THC should make PPARα free to achieve FA2H induction. Here, we show that a PPARβ/δ-mediated suppression of PPARα function, but not of PPARγ, exists in MDA-MB-231 cells and Δ9-THC causes FA2H induction via mechanisms underlying the cancellation of PPARβ/δ-mediated inhibition of PPARα, in addition to the upregulation of PPARα.[Abstract] [Full Text] [Related] [New Search]