These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparing hydroxyapatite with osteogenic medium for the osteogenic differentiation of mesenchymal stem cells on PHBV nanofibrous scaffolds. Author: Lyu LX, Zhang XF, Deegan AJ, Liang GF, Yang HN, Hu SQ, Yan XL, Huang NP, Xu T. Journal: J Biomater Sci Polym Ed; 2019 Feb; 30(2):150-161. PubMed ID: 30556784. Abstract: Having advantageous biocompatibility and osteoconductive properties known to enhance the osteogenic differentiation of mesenchymal stem cells (MSCs), hydroxyapatite (HA) is a commonly used material for bone tissue engineering. What remains unclear, however, is whether HA holds a similar potential for stimulating the osteogenic differentiation of MSCs to that of a more frequently used osteogenic-inducing medium (OIM). To that end, we used PHBV electrospun nanofibrous scaffolds to directly compare the osteogenic capacities of HA with OIM over MSCs. Through the observation of cellular morphology, the staining of osteogenic markers, and the quantitative measuring of osteogenic-related genes, as well as microRNA analyses, we not only found that HA was as capable as OIM for differentiating MSCs down an osteogenic lineage; albeit, at a significantly slower rate, but also that numerous microRNAs are involved in the osteogenic differentiation of MSCs through multiple pathways involving the inhibition of cellular proliferation and stemness, chondrogenesis and adipogenesis, and the active promotion of osteogenesis. Taken together, we have shown for the first time that PHBV electrospun nanofibrous scaffolds combined with HA have a similar osteogenic-inducing potential as OIM and may therefore be used as a viable replacement for OIM for alternative in vivo-mimicking bone tissue engineering applications.[Abstract] [Full Text] [Related] [New Search]